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EXECUTIVE SUMMARY 

This report summarizes the results from a study performed by The Boeing Company, Huntington 
Beach, CA, during August 1996 to February 2003.  This study was undertaken to achieve two 
goals:  (1) take existing analysis tools developed under government-funded research and 
establish the processes required to use them as engineering tools to determine the effects of 
multiple-site damage (MSD) on the residual strength in the representative aircraft structures and 
(2) investigate small crack behavior to better understand the formation of MSD in a structure. 
 
WFD is a complex phenomenon that is extremely difficult to analyze with standard methods 
developed from first principles of linear elastic fracture mechanics (LEFM).  Because of the 
limited applications of LEFM, more advanced methods have been explored and developed over 
the past decade with the support and sponsorship of the Federal Aviation Administration (FAA) 
and the National Aeronautics and Space Administration.  This includes analytical tools to 
determine parameters governing the onset and growth of cracks and elastic-plastic fracture 
criterion for residual strength determinations.  The tools include the finite element alternating 
method (FEAM); a computationally efficient yet rigorous approach to calculate two- and three-
dimensional stress-intensity factor (SIF) solutions governing crack growth; FASTRAN, a fatigue 
crack growth analysis program using a crack-closure model; and STAGS, an advanced finite 
element program implemented with fracture mechanics and stable-tearing analysis capabilities 
for generalized shell structures.  The elastic-plastic failure criterion include the plastic zone touch 
(PZT), crack tip opening angle (CTOA), and the T*-integral. 
 
These tools and criteria were used and verified in this program to analyze portions of the 
multiple-site crack initiation, growth, linkup, and catastrophic fracture process.  For the 
development of MSD, the fundamental phenomenon of fatigue crack initiation in material and 
the rate of growth were addressed at the coupon level experimentally and analytically using 
FASTRAN.  The initiation of MSD was dealt with at the component level on flat panels that 
were representative of typical fuselage lap splices.  Experimentally generated data and a closure-
based crack growth code were used to develop equivalent initial flaw sizes (EIFS).  For residual 
strength analysis, the approach taken was to apply the T*-integral, CTOA, and plastic zone 
linkup (PZL) criteria to predict the linkup and fast fracture of MSD.  A procedure was developed 
that used elastic-plastic finite element analyses using STAGS and CTOA to perform the stable 
tearing and unstable fracture of MSD in aircraft structures. 
 
Computational tools must be verified and validated using experimental data to ensure successful 
transfer of useable and accurate technology to industry.  Extensive experimental work was 
carried out to generate test data for correlation and validation of the various methodologies and 
criteria.  Testing was conducted collaboratively by five organizations: (1) The Boeing Company, 
Long Beach, CA; (2) United States Air Force (USAF), Air Force Research Laboratory (AFRL) 
at Wright-Patterson Air Force Base; (3) Beijing Institute of Aeronautical Materials (BIAM); (4) 
Civil Aviation Authority of China (CAAC); and (5) the FAA William J. Hughes Technical 
Center. 
 
This project was divided into six major tasks to analyze portions of the multiple-site crack 
initiation, growth, linkup, and catastrophic fracture process. 
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1. Crack Initiation.  Cracks were initiated and developed from edge-notched coupons and 
analyzed using FASTRAN.  Testing was conducted by BIAM and CAAC under several 
fatigue loading conditions, including constant-amplitude and spectrum loading.  Good 
correlation between analysis and experimental data was demonstrated under constant-
amplitude loading for crack sizes larger than 0.005 inch.  However, under spectrum 
loading, there was poor correlation. 

2. Equivalent Initial Flaw Size.  A semiempirical procedure was developed for the 
determination of EIFS using FASTRAN.  Tests were conducted by AFRL using large flat 
panels with four joint configurations representative of aircraft joint construction.  The 
attempts to develop comprehensive SIF solutions by compounding or superpositioning 
for the individual effects derived from first principles were not effective.  An iterative 
method was developed to empirically account for these factors for the prediction to match 
the experimental results.  In this way, the EIFS was determined to fall between 0.0001 to 
0.0015 inch for the four types of splice joints.  However, whether the results can be 
applied to other structures under different loading conditions or using different crack 
growth models requires additional study. 

3. Small Crack Growth.  Small crack growth data was generated in pin-loaded specimens 
and analyzed using FASTRAN.  Testing was conducted by AFRL under various load 
transfer conditions.  In general, good correlation was obtained between test and analysis 
for open-hole specimens under constant-amplitude loads.  However, analysis predicted 20 
to 30 percent faster crack growth rate for the pin-loaded specimens. 

4. MSD in Flat Panels.  The CTOA, T*-integral, and PZL criteria were used to analyze flat 
panels with MSD.  Tests were conducted by AFRL using large flat panels with four joint 
configurations representative of aircraft joint construction.  The PZL criterion provides a 
quick and simple way for residual strength estimations.  T*-integral, together with 
FEAM, was able to predict the stable tearing of MSD cracks in a flat spliced panel.  
Using STAGS code, the CTOA criterion was able to predict the residual strengths of 
MSD in splice joints.  Using these criteria, predictions of the residual strength were 
within 8 percent. 

5. MSD in Curved Panels.  The CTOA criterion was used to analyze curved panels with 
MSD.  Tests were conducted by the FAA William J. Hughes Technical Center using the 
Full-Scale Aircraft Structural Test Evaluation and Research facility.  CTOA predictions 
agree well with the curved panel test results, within 5 percent. 

6. MSD in Aft Pressure Bulkhead.  The CTOA criterion was used to analyze an aft pressure 
bulkhead with MSD.  Tests were conducted by the AFRL.  CTOA predictions agree well 
with the curved panel test results, within 5 percent. 

In summary, this project demonstrated a successful transfer of technology developed from basic 
research to real-work applications.  Using this technology, a methodology to assess the 
development of MSD and its effect on the residual strength of aircraft structure was developed.  
The three major components of the methodology are crack initiation, crack growth and linkup, 
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and residual strength.  The crack initiation methodology used experimentally generated EIFS 
data and an analytical closure model to determine initial flaw sizes and distribution for multiple-
site cracking.  The CTOA, T*-integral, and PZT criteria were used to predict crack growth and 
linkup.  Elastic-plastic finite element analyses were used with the CTOA to determine the 
residual strength of an aircraft structure containing a long lead crack in the presence of MSD.  
The methodologies were verified through a comprehensive test program. 
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